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a b s t r a c t

Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for
determination of distributions of the error quantification scores (scores of likelihood and severity, and
scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was
based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert
judgments were taken into account by means of different probability mass functions (pmfs). As a case
study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by
ICP–MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior
were compared. Variability of the scores, as standard deviation of the simulated score values from the
distribution mean, was used for assessment of the score robustness. A range of the score values,
calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also
discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the
case study, can be assessed as satisfactory for the quality risk management and improvement of a
laboratory quality system against human errors.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quality risk management in a chemical analytical laboratory in
the pharmaceutical industry, medicine or any other field requires
identification and mapping of human errors as potential hazards
which may occur during the analysis (measurement/testing process).
Evaluation of the error likelihood and severity (the risk assessment)
is necessary for their reduction, i.e., mitigation, avoidance or blocking
of the errors by the laboratory quality system [1,2].

There are commission errors (knowledge-, rule- and skill-based
mistakes and routine, reasoned, reckless and malicious violations)
and omission errors (lapses and slips) of a sampling inspector and/
or an analyst/operator [3]. These errors are active. Errors due to a
poor laboratory design, a defect in the equipment or a faulty
management decision, not depending on the inspector and/or the
operator, are defined as latent errors [2]. The kinds of human error
k¼1, 2, …, K and steps of the analysis m¼1, 2, …, M in which the
error may happen (locations of the error), form event scenarios
i¼1, 2, …, I, where I¼K�M.

A Swiss cheese model is used for characterization of the interac-
tion of errors with a laboratory quality system [3]. This model
considers the quality system components j¼1, 2,…, J as protective
layers against human errors. For example, the system components
are: validation of the measurement/analytical method and formula-
tion of standard operation procedures (further “validation”); training
of analysts and proficiency testing (further “training”); quality control
using statistical charts and/or other means (further “quality control”);
and supervision. Each such component has weak points, whereby
errors are not prevented, similar to holes in slices of the cheese.
Coincidence of the holes in all components of the laboratory quality
system on the path of a human error is a defect of the quality system,
permeable to the error, leading to an atypical result of the analysis.

By a recently developed technique for error quantification [4],
an expert in the analysis may estimate likelihood pi of scenario i by
the following scale: likelihood of an unfeasible scenario—as pi¼0,
weak likelihood—as pi¼1, medium—as pi¼3, and strong (max-
imal) likelihood—as pi¼9. The expert estimates/judgments on
severity of an error by scenario i as expected loss li of reliability
of the analysis, are performed with the same scale (0, 1, 3, 9).
Estimates of the possible reduction rij of likelihood and severity of
human error scenario i as a result of the error blocking by quality
system layer j (degree of interaction) are made by the expert
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(s) using the same scale again. The interrelationship matrix of rij
has I rows and J columns, hence it contains I� J entries. Blocking
human error according to scenario i by a quality system compo-
nent j can be more effective in the presence of another component
j0 (j0a j) because of their synergy ΔðiÞ

jj0 , equals to 0 when the effect is
absent, and equals to 1 when it exists. Estimates qj of importance
of quality system component j in decreasing losses from human
error are calculated as qj ¼∑I

i ¼ 1pilirijsij, where the synergy factor
is sij ¼ 1þ∑J

j0 a jΔ
ðiÞ
jj0 =ðJ�1Þ.

The technique allows transformation of the independent
semi-intuitive expert judgments on human errors and on the
laboratory quality system into the following quantitative scores
expressed in %:

(a) likelihood score of human error in the analysis Pn ¼
ð100%=9ÞΣI

i ¼ 1pi=I;
(b) severity (loss) score of human error for reliability of the

analysis results Ln ¼ ð100%=9Þ∑I
i ¼ 1li=I ;

(c) importance score of a component of the laboratory quality
system qn

j ¼ 100% qj=∑
J
j ¼ 1qj, and similar score of the

quality system influence at step m of the analysis ~qn

m ¼
100% ~qm=∑M

m ¼ 1
~qm, where ~qm ¼∑mþMðK�1Þ

i0 ¼ m ∑J
j ¼ 1pi0 li0 ri0jsi0 j ,

and i0 ¼mþM(k�1) are the scenario numbers related to the
same error location (step m) for all kinds of error k¼1, 2, …,
K; and

(d) effectiveness score of the quality system, as a whole, against
human error Ef f n ¼ ð100%=9Þ∑J

j ¼ 1qj=∑
J
j ¼ 1∑

I
i ¼ 1pilisij.

This technique was applied for quantification of human errors
in pH measurements of groundwater [4], and in multi-residue
analysis of pesticides in fruits and vegetables [5]. Expert judg-
ments are used also in landscape ecology [6] and biosecurity [7],
counterterrorism risk assessment [8,9] and many other fields [10].
A comprehensive list of expert judgment bibliography is available
in Ref. [11]. In analytical chemistry and metrology an expert
judgment is based on knowledge of the nature of the analyte
and measurand, the analytical procedure (measurement method)
used, earlier observations and common sense. Thus, judgments are
not arbitrary [12]. However, any expert is also a human being and
the elicitation process [13], by which the expert is prompted to
provide error likelihood, severity and other estimates, is influ-
enced by aleatory and epistemic uncertainty [14], intrapersonal
conflicts [15], etc.

Therefore, evaluation of variability of the error quantification scores
(their robustness to the doubts of an expert) is important as well [5].
The present paper describes such an evaluation based on Monte Carlo
simulations. Scenarios of human errors in elemental analysis of
geological samples (determination of elemental mass fractions) by
inductively coupled plasma mass spectrometry (ICP–MS) and varia-
bility of the corresponding error quantification scores are discussed
here as a case study.

2. An expert judgment as a discrete quantity

An expert judgment for human error quantification is a discrete
quantity that can take any scale value among (0, 1, 3, 9) with a
probability distributed according to the judgment probability mass
function (pmf). When a value is chosen on the scale, the expert
may still feel a doubt concerning neighboring scale values. Choos-
ing 0, this expert thinks about 1 as a value which is possible, but
with significantly lower pmf. Choosing 1, the expert necessarily
takes into account 0 and 3, but again with equally lower pmf, etc.
However, more distant scale values are not relevant. Otherwise,
the expert is not experienced in the field and should not

participate in the elicitation process. The following distributions
modeling an expert behavior are studied in the present paper:

1) of confident expert judgments: the pmf at a chosen scale value
is 0.90, whereas close values on the right and/or on the left on
the scale have a total pmf equal to 0.10;

2) of reasonably doubting expert judgments: the pmf at a chosen
value is 0.70, whereas close values on the scale have a total pmf
equal to 0.30; and

3) of irresolute expert judgments: the pmf at a chosen value is
0.50, and the close values on the scale have a total pmf equal to
0.50 also.

More pmf details are shown in Table 1. These three pmfs represent
properly the whole range of cases from the most to the less confident
expert judgments in the framework of the proposed modeling.

Sampling from these distributions for random generation of
expert judgments as discrete values was performed using a code
developed in R [16,17].

3. Distributions of score values for quantification of human
errors

Since human error quantification scores Pn, Ln, qn

j , ~q
n

m and Effn,
are calculated as algebraic combinations of the elicited expert
judgments pi, li, rij, and synergy factors sij (which, in the present
context, are considered as entirely known), the probability dis-
tributions for these scores depend on the distributions of the
expert judgments. A Monte Carlo simulation of the score distribu-
tions was performed based on the following algorithm inspired by
JCGM 101 [18]:

1) input of the elicited estimates pi, li and rij, synergy factors sij,
numbers K of kinds of human error, M of steps of the chemical
analysis, I of human error scenarios, J of the laboratory quality
system components, and number of the Monte Carlo trials
nMC¼100,000;

2) assignment of probability mass functions (pmfs) to the expert
judgments pi, li, rij;

3) simulation of possible values of expert judgments on human
error by scenario i according to the chosen pmf on the scale
values (0, 1, 3, 9) for i¼1 to I: the matrix of simulated values is
of dimension I�nMC;

4) determination of the numerical distributions for scores Pn, Ln,
qn

j , ~qn

m and Effn by propagating the simulated distributions of
the expert judgments into the relevant equations discussed in

Table 1
Probability mass functions (pmfs) of expert judgments.

Expert judgment Chosen scale value Scale

0 1 3 9

Confident 0 0.90 0.10 0.00 0.00
1 0.05 0.90 0.05 0.00
3 0.00 0.05 0.90 0.05
9 0.00 0.00 0.10 0.90

Reasonably doubting 0 0.70 0.30 0.00 0.00
1 0.15 0.70 0.15 0.00
3 0.00 0.15 0.70 0.15
9 0.00 0.00 0.30 0.70

Irresolute 0 0.50 0.50 0.00 0.00
1 0.25 0.50 0.25 0.00
3 0.00 0.25 0.50 0.25
9 0.00 0.00 0.50 0.50
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the Introduction; evaluation of the score mean, median and
standard deviation (mean and median can be different because
of a possible asymmetry in the simulated distributions);

5) plotting histograms for the distributions of the scores.

The detailed R code can be sent upon request.

4. Steps of elemental analysis of geological samples by ICP–MS
and some analytical details

There are four main steps m¼1, 2, 3, and 4 of the analysis:
(1) sample preparation, (2) ICP–MS calibration; (3) measurement
with ICP–MS; and (4) calculation of elemental mass fractions in
analyzed samples and reporting.

Sample preparation of rocks and sediments is based on fusion
of the sample with lithium metaborate or sodium peroxide flux.
Then the obtained bead is dissolved in nitric acid in an ultrasonic
bath [19,20]. The solution should be filtered and diluted with
water to a sample/solution weight ratio in the range from 1:1000
to 1:4000. Samples of peridotites and a number of types of magma
can be prepared by digestion of a sample with an HF–HNO3

mixture in an ultrasonic bath. When samples contain resistant
phases, e.g. zircon, applied temperature and pressure are increased
using microwaves or digestion bombs. Then samples are evapo-
rated to incipient dryness, refluxed in nitric acid, evaporated and
dissolved again, filtered and diluted with water [21]. For analysis
of trace and rare earth elements sample digestion with an
HF–HClO4 mixture under pressure can be applied [22]. In any case
an analytical blank is prepared identically to the samples.

Synthetic and natural certified reference materials (CRMs) [23]
are used for preparation of matrix matched calibrators of ICP–MS
[24]. Concentration of the acids and flux quantity in such calibrators
should be the same as in the samples prepared for analysis. That is
in addition to the known requirement to CRMs used to have a
composition close to the analyzed samples for minimization of
matrix effects [25]. The CRMs (not the same as for calibration) are
used also as internal standards and quality control samples [26].

5. Scenarios of human error

5.1. Knowledge-based mistakes, k¼1

A knowledge-based mistake occurs when an analyst faces a
new situation, wherein his/her knowledge for making the right
decision is not sufficient.

Scenario i¼1 in sample preparation, m¼1. A sample containing
an excessively high quantity of an analyte (not diluted as necessary)
may produce too low of a response since not all the quantity will be
ionized, resulting in a wrong recovery factor applied for corrections.

Scenario i¼2 in ICP–MS calibration, m¼2. Application of an
inadequate calibrator (with a difference in the matrix in compar-
ison to the samples) may lead to a bias in the test results.

Scenario i¼3 in measurement with ICP–MS, m¼3. Use of an
improper blank solution (did not pass all the steps of the sample
preparation) may also cause biased results.

Scenario i¼4 in calculation and reporting, m¼4. Mistaken
interpretation of interferences (e.g., due to diatomic molecules)
may influence the test result.

5.2. Rule-based mistakes, k¼2

A rule-based mistake may occur when an analyst encounters a
relatively familiar problem, but applies an unsuitable solution
or rule.

Scenario i¼5 in sample preparation, m¼1. An analyst, using as
a rule sample preparation by digestion of a sample with an
HF–HNO3 mixture in an ultrasonic bath, may not take into account
that a sample contains a resistant phase, which requires applica-
tion of a microwave or digestion bombs.

Scenario i¼6 in ICP–MS calibration, m¼2. Usual dilution of
reference materials for preparation of calibrators, when another
dilution is necessary, may cause atypical test results.

Scenario i¼7 in measurement with ICP–MS, m¼3. When drift
of the instrument response is usually controlled for specific ion
masses, whereas another analyte is under determination, the
control may be not sufficient and the results shifted.

Scenario i¼8 in calculation and reporting, m¼4. Unusual
sample mass applied in an analysis (e.g., to increase quantity of
an analyte) may be forgotten by an operator and the regular mass
introduced erroneously in the file for calculations.

5.3. Skill-based mistakes, k¼3

Skill-based mistakes are the result of inadequate analyst
performance occurring from overconfidence of the type “I have
done this many times” [27].

Scenario i¼9 in sample preparation, m¼1. Dissolution of a
sample in an acid mixture containing HF in a Teflon beaker (not in
a digestion bomb) as usually done for determination of minor
elements and/or traces, wherein silicon is an analyte, may lead to a
loss of silicon.

Scenario i¼10 in ICP–MS calibration, m¼2. Use of the same
calibrator as previously, when its container is not closed herme-
tically and the element concentrations change due to water
evaporation, is a mistake.

Scenario i¼11 in measurement with ICP–MS, m¼3. Flux-fusion
sample solutions may form a gel, not always immediately visible,
but clogging the nebulizer and leading to inhomogeneity of the
analyte distribution in the test portion. Measurements of the
analyte concentrations in such solutions (in regular conditions)
may lead to mistaken results.

Scenario i¼12 in calculation and reporting, m¼4. A skill-based
human error is possible when an analyst usually uses a certain
order of samples, whereas an assisting operator arranged the
samples in another way.

5.4. Routine violations, k¼4

As a rule the reason for routine violations in the analysis is a
wish to shorten the work.

Scenario i¼13 in sample preparation, m¼1. A decision of an
analyst after dissolution (based on visual inspection) that the
filtration is not necessary and may be ignored to shorten the
procedure, is a routine violation.

Scenario i¼14 in ICP–MS calibration, m¼2. To prepare a
calibrator, a small value of concentrated CRM solution may be
diluted to a large volume by one step, to avoid spending time for a
longer procedure with more steps of dilution. The calibrator
prepared in this way will be not accurate.

Another example is reducing the number of calibrators in order
to shorten the work.

Scenario i¼15 in measurement with ICP–MS, m¼3. Reducing
the required number of replicates for shortening the work is a
routine violation.

Another example is when result reading is started immediately
after introduction of a sample into the instrument, without wait-
ing at least 1 min for a stable response.

Scenario i¼16 in calculation and reporting, m¼4. When a
report is not checked with purpose to save time, a twist of the
data during their transformation to the final file may not be noted,
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and therefore not corrected, as in any other determination of a
number of analytes in a number of samples, e.g., in Ref. [5].

5.5. Reasoned violations, k¼5

A reasoned violation is caused by a wish to improve the
analytical process.

Scenario i¼17 in sample preparation, m¼1. An analyst may
use more flux for fusion than required by the procedure in order
to improve a sample preparation. However, it will lead to an
increased concentration of salts, not appropriate for the blank in
the run (for a set of samples).

Scenario i¼18 in ICP–MS calibration, m¼2. To improve a
method, an analyst may wish to increase a calibration range
(which is anyway wide in ICP–MS) in spite of limitation at both
minimal and maximal analyte concentrations.

Scenario i¼19 in measurement with ICP–MS, m¼3. When a
flow-injection system is used for the sample introduction, a
limited number of analyte concentrations can be measured simul-
taneously (in the same run). An attempt to increase the number of
analytes is a routine violation, since some of the analytes may not
be detected accurately as required.

Scenario i¼20 in calculation and reporting, m¼4. An analyst
may remove an outlier from the data without investigation with
the purpose to obtain a more “accurate” test result.

Another example is the “reference materials syndrome”, when
an analyst reports analyte concentration values close to those in
CRM certificates (applied as control samples) which are subse-
quently found to be incorrect [28].

5.6. Reckless violations, k¼6

A reckless violation may be a result of a state of mind in which
an analyst acts without caring about the consequences.

Scenario i¼21 in sample preparation, m¼1. When cleaning of
crucibles for fusing or glassware for dilution is performed impro-
perly, a sample may become contaminated.

Scenario i¼22 in ICP–MS calibration, m¼2. Use of a CRM after
the expiration date may lead to a biased calibration curve.

Scenario i¼23 in measurement with ICP–MS, m¼3. If an
inadequate blank (from a previous analysis run) is taken recklessly,
the measurement results may be biased.

Another example is when an analyst does not notice that a
blank may also produce a response caused or influenced by
contamination.

Scenario i¼24 in calculation and reporting, m¼4. Recklessness
may lead to confusing names of samples.

5.7. Malicious violations, k¼7

A malicious violation, including sabotage, is possible as a result
of a conflict between an analyst and the laboratory manager [29].

Scenario i¼25 in sample preparation, m¼1. It may be reflected
in filling sample labels in a confusing manner, i.e., such labels
cannot be read simply and unambiguously.

Scenario i¼26 in ICP–MS calibration, m¼2. On this step of the
analysis the violation may consist of the use of previous calibration
data instead of re-calibration.

Scenario i¼27 in measurement with ICP–MS, m¼3. Confusing
names of samples may be caused not only because of recklessness,
as in scenario 24 above, but also intentionally.

Scenario i¼28 in calculation and reporting, m¼4. Falsification
of data is a malicious violation.

5.8. Lapses, k¼8

A lapse is an occurrence in which an analyst fails to act as
required for a brief time (e.g., “senior moments” [30]).

Scenario i¼29 in sample preparation, m¼1. An analyst may
forget that he/she has already added the necessary quantity of an
internal standard to a sample and adds it again.

Another example is when the analyst forgets to dry a sample
before weighing.

Scenario i¼30 in ICP–MS calibration, m¼2. An analyst/operator
may forget to stir a prepared calibrator as required.

Scenario i¼31 in measurement with ICP–MS, m¼3. Cleaning of
a nebulizer and/or glassware used between runs may be forgotten
because of a lapse.

Scenario i¼32 in calculation and reporting, m¼4. A lapse may
happen during the introduction of the data into the file: incorrect
test results may be reported in such a case.

5.9. Slips, k¼9

A slip is an action of an analyst that is not in accordance with
the plan.

Scenario i¼33 in sample preparation, m¼1. A sample may be
incompletely transferred into a crucible, when poured out by a slip
after weighing.

Scenario i¼34 in ICP–MS calibration, m¼2. When an analyst
pushes the arm of an automatic pipette stronger than necessary to
achieve the stop (because of a slip), the volume is larger than
required and the concentration of the analyte in the calibrator is
changed.

Scenario i¼35 in measurement with ICP–MS, m¼3. If a capil-
lary used for sample introduction is set inaccurately by a slip, and
air is passed with the liquid to the nebulizer, the measurement
results may be erroneous.

Scenario i¼36 in calculation and reporting, m¼4. When the
daily number of analyzed samples (sample throughput) is large,
reporting results related to one sample as results of another
sample, by a slip, is possible.

Thus, in spite of achievements in ICP–MS development, there
are still a number of human error scenarios in elemental analysis
of geological samples, which should be taken into account in a
routine laboratory for quality risk management.

6. Results and discussion

Elicited expert judgments on human errors by the described 36
scenarios are presented in Table 2. Results of the direct score
calculations from these data (using formulas discussed in the
Introduction) are in Table 3. Mean, median and standard deviation
(STD) of the relevant distributions determined using Monte Carlo
simulations are also presented in Table 3. One can see from Table 3
that the mean score values of a confident expert are very close
to the score values calculated directly from the elicited data.
The mean values (as well as the median) change systematically
depending on the confidence of the expert judgments, i.e.,
depending on the relevant pmfs. Accordingly, it makes sense that
the corresponding standard deviations increase as long as the
expert judgments become less confident. However, it is interesting
that all the mean (and the median) values of the simulated scores
remain consistent with the score values calculated directly from
the data within two such standard deviations. Moreover, the score
values calculated directly from the data can be interpreted as
obtained when the expert judgments are “absolutely confident”,
i.e., when a Dirac delta function, centered at a specific expert
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estimate on the scale, is applied as the pmf. This pmf takes value
1 at that expert estimate (judgment), whereas the same pmf
equals to zero at the rest of the scale.

Histograms illustrating the score distributions for a reasonably
doubting expert, for example, are shown in Fig. 1. There are:

(a) the likelihood score Pn, (b) the severity score Ln, (c) the
importance of quality control score qn

j ¼ 3, (d) the score ~qn

m ¼ 2 of
the quality system influence at ICP–MS calibration (second step of
the analysis), and (e) the effectiveness score Effn of the quality
system in the analysis in whole.

6.1. Likelihood and severity

The likelihood score, summarizing the elicited judgments
presented in Table 2, is Pn¼22%. This means that human error
may happen in the analysis on average of about one out of five
samples. It is clear from Table 3 that a less confident expert may
lead to larger estimates for Pn, from 24% to 29%, on average. Hence,
the less confident the expert is, the more underestimated is the Pn

value actually calculated from the data. When Pn is increasing, the
standard deviation is also increasing from 2% to 4%. Similar Pn

variability was also discussed in Ref. [5], based on the assumption
that an expert may change his/her opinion “tomorrow” on 1 or
2 scenarios. In spite of equivalence of Pn mean and median
(rounded) values for a reasonably doubting expert, a minor asym-
metry of the histogram in Fig. 1a is visible, probably due to the
non-equidistant scale of the expert estimates/judgments through
which the input pmfs were propagated. However, there are also
other possible reasons for the asymmetry, e.g., when an expert
unconsciously avoids one of the extreme choices on the scale
(0 and 9). The human error severity score is Ln¼56%. Thus,
approximately every second result of the ICP–MS elemental
analysis burdened with human errors cannot be corrected, and
analysis of corresponding samples should be repeated, when the
error source is detected and eliminated.

For comparison, in the example provided in Ref. [4] for pH
measurement of groundwater, the likelihood score value (27%) and
the severity score value (65%) were larger than in the current case.
For multi-residue analysis of pesticides in fruits and vegetables
Pn¼19% and Ln¼84% were obtained [5]. The difference between
these score values can be explained by specificity of the analytical
methods and conditions of their use in a routine laboratory.

As appears from Table 3, a less confident expert leads to a
reduction in the estimates of the severity from mean Ln¼55% to
51%, but again with an increasing standard deviation from 3%
to 5%. There is no difference between mean and median for a
reasonably doubting expert, but a minor asymmetry of the
histogram in Fig. 1b is also observed, as for the likelihood score.

Table 2
The elicited expert judgments.

Scenario i Likelihood pi Severity li Degree of
interaction rij

Synergy factor sij

Quality system
component j

Quality system
component j

1 2 3 4 1 2 3 4

1 3 9 3 9 1 3 1.67 1.33 1.33 1
2 1 3 3 3 3 9 1.67 1.33 1.33 1
3 3 3 3 9 9 9 1.67 1.33 1.33 1
4 1 1 9 9 3 9 1.67 1.33 1.33 1
5 3 3 9 3 3 3 1.67 1.33 1.33 1
6 1 1 3 3 9 3 1.67 1.33 1.33 1
7 3 3 1 9 9 3 1.67 1.33 1.33 1
8 3 9 1 3 3 3 1.67 1.33 1.33 1
9 1 3 3 3 3 3 1.67 1.33 1.33 1

10 3 1 1 3 3 3 1.67 1.33 1.33 1
11 3 9 3 3 9 3 1.67 1.33 1.33 1
12 3 9 3 3 1 1 1.67 1.33 1.33 1
13 3 3 3 3 9 3 1.67 1.33 1.33 1
14 3 3 9 9 3 9 1.67 1.33 1.33 1
15 3 3 1 3 9 9 1.67 1.33 1.33 1
16 3 9 3 3 3 3 1.67 1.33 1.33 1
17 1 1 9 9 3 3 1.67 1.33 1.33 1
18 1 3 9 9 3 3 1.67 1.33 1.33 1
19 3 3 3 9 3 3 1.67 1.33 1.33 1
20 3 3 3 3 3 3 1.67 1.33 1.33 1
21 1 3 3 3 9 3 1.67 1.33 1.33 1
22 3 3 3 3 3 3 1.67 1.33 1.33 1
23 1 3 1 9 3 3 1.67 1.33 1.33 1
24 3 9 0 3 3 3 1.67 1.33 1.33 1
25 1 9 0 1 1 1 1 1 1 1
26 1 9 0 1 3 3 1 1 1 1
27 1 9 0 1 3 3 1 1 1 1
28 1 9 0 1 3 3 1 1 1 1
29 3 3 0 1 1 1 1 1 1 1
30 3 3 0 3 3 3 1 1 1 1
31 1 9 1 3 3 3 1 1 1 1
32 1 9 0 1 3 3 1 1 1 1
33 1 3 0 1 1 1 1 1 1 1
34 1 3 0 3 3 3 1 1 1 1
35 3 3 0 3 3 3 1 1 1 1
36 1 9 0 3 3 3 1 1 1 1

Table 3
The score values (%) calculated directly from the elicited data in comparison to those obtained by Monte Carlo simulations.

Score Calculated directly Monte Carlo simulations

Confident expert Reasonably doubting Irresolute expert

Mean Median STD Mea Median STD Mean Median STD

Pn 22 24 23 2 26 26 3 29 29 4
Ln 56 55 55 3 53 53 5 51 51 5
qn

j ¼ 1 24 25 24 2 26 25 4 27 26 5

qn

j ¼ 2 26 26 26 2 26 26 3 26 26 4

qn

j ¼ 3 27 27 27 2 26 26 3 26 26 4

qn

j ¼ 4 23 23 23 2 22 22 3 22 21 4

~qn

m ¼ 1
30 29 28 6 26 25 9 25 23 10

~qn

m ¼ 2
14 15 14 4 16 15 6 18 17 8

~qn

m ¼ 3
25 25 25 5 26 25 9 27 26 11

~qn

m ¼ 4
32 32 31 6 31 30 9 30 29 11

Effn 55 54 54 3 53 53 4 51 51 5

Note: STD is standard deviation of a simulated score value from its mean.
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6.2. Quality system scores

From Table 3 one can understand that the most important
component of the quality system is quality control (qn

j ¼ 3 is
maximal), then training, validation and supervision follow. This
is a different ordering than in Ref. [4,5]. The qn

j ¼ 3 score value is
from 27% to 26% for all discussed kinds of calculation and

simulations, with a standard deviation varying from 2% to 4%.
Neither a difference between the mean and the median of the
simulated values in Table 3, nor any asymmetry in the histogram
in Fig. 1c can be observed for this score.

The ~qn

m values in Table 3 for different steps of the analysis show
that the ability of the quality system to prevent human errors at the
ICP–MS calibration ( ~qn

m ¼ 2) is minimal. The ~qn

m ¼ 2 score values are

Fig. 1. Histograms of the scores corresponding to judgments of a reasonably doubting expert, simulated by the Monte Carlo method: (a) the likelihood Pn, (b) the severity Ln,
(c) the importance of quality control qn

j ¼ 3 , (d) the influence of the quality system at second step of the analysis (ICP–MS calibration) ~qn

m ¼ 2, and (e) the effectiveness of the
quality system at all steps of the analysis in whole Effn.
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from 14% to 18% with a standard deviation varying from 4% to 8%,
depending on the expert confidence. The variability of ~qn

m scores is the
largest in comparison to other scores in Table 3. A difference of 1–2%
between the mean and the median of the ~qn

m score values and an
evident asymmetry of the histograms are observed. In particular, that
is shown in Fig. 1d for the ~qn

m ¼ 2 score.
Effectiveness of the whole quality system for all steps of the

analysis is Effn¼55%. It is a relatively low effectiveness in compar-
ison to 59% for pH measurement of groundwater [4] and 71% for
pesticide residue analysis [5]. The mean of the simulated Effn score
values for the elemental analysis by ICP–MS is from 54% to 51%
with a standard deviation varying from 3% to 5%. In general Effn

tends to be overestimated in direct calculation from the elicited
data, similar to Ln (opposed to Pn tending to be underestimated)
when confidence of expert judgments is decreasing.

There is no difference between the Effn mean and median, and
the score histogram in Fig. 1e is completely symmetric.

6.3. Robustness

The score robustness for the quality risk management and
improvement of a laboratory quality system could be considered
as satisfactory when a score relative variability, expressed as
relative standard deviation RSD¼STD/Mean, does not exceed 0.4
(rounded up from 1/3). In other words, a score is robust when
variability (STD) of the expert judgments can be defined as
insignificant in comparison to the score mean. Such a rule of 1/3
is used in metrology [31], e.g., for verification of weights [32] and
preparation of test items for proficiency testing [33]. Practically
the same rule is applied in spectroscopy for determination of limit
of detection, as an analyte concentration equal to 3 STD of the
measuring system response for a blank (noise) [34].

For example, for Effn score this requirement to robustness
implies RSD¼STD/Effnr0.4. In the case of the elemental analysis
by ICP–MS the RSD of Effn is less than 0.1 for all models of the
expert behavior. Therefore, one can assume that the robustness of
this score is satisfactory. Other scores in Table 3 could also be
assessed as robust enough. The ~qn

m scores, especially ~qn

m ¼ 2, are less
robust. However, even for an irresolute expert, the robustness of
~qn

m ¼ 2 is still acceptable, since corresponding relative standard
deviation is RSD¼8/18¼0.4.

It is important also that the score relative range (the difference
between the maximal and the minimal score values related to
their average), calculated from elicited data and simulated values
does not exceed 0.4. From Table 3, the largest relative range is of
score ~qn

m ¼ 2, however this range is still acceptable, since (18–14)/
16¼0.25o0.4. Thus, the results of the human error quantification
obtained in the case study are not dependent significantly on the
kinds of calculation and simulation performed, i.e., are robust from
this perspective as well.

7. Conclusion

The Monte Carlo method was applied for simulation of expert
judgments on human errors in a chemical analysis and determina-
tion of score distributions for quantification of the errors. The
simulation, based on modeling of an expert behavior by means of
plausible pmfs, allowed evaluation of the score variability caused
by variability of the expert judgments.

A case study of elemental analysis of geological samples by
ICP–MS showed that in spite of achievements in instrument develop-
ment there are still a number of human error scenarios, which should
be taken into account in a routine laboratory for quality risk
management.

The results of the human error quantification obtained in the
case study are not dependent significantly on the kinds of calcu-
lation or simulation performed and can be assessed as robust for
quality risk management and improvement of quality system in an
analytical chemical laboratory.
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